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ABSTRACT 

A preliminary assessment of the geometry of the geomagnetic t a i l  is  

made using data from the Ames magnetometer on the Ekplorer 33 s a t e l l i t e .  

The general shape corresponds t o  the e a r l i e r  findings of Ness and co- 

mrkers .  The 

f i e l d  values vary f o r  Kp 5 2+ from a l o w  of about 4 gamma t o  a high value 

of 40 gamma. 

gamma. 

direction is observed, such that an added component of  magnetic f i e l d  i n  

the direction of planetary motion i s  present on both sides of the null 

plane. The skewing appears to be greatest  near the nu l l  plane. Increase 

i n  f i e l d  magnitude with increasing % i s  observed. 

be shown t o  f i t  a power o r  exponent9al l a w  with near equal val idi ty .  

correlation analysis of f i e l d  magnitude with r ad ia l  distance, ap, and 

transverse posit ion coordinates also i s  discussed. L i t t l e  cross gradient 

i s  observed i n  the t a i l  f ie ld .  Strong evidence f o r  reconnection of f i e l d  

l i n e s  i s  found, and s t a t i s t i c s  are presented f o r  a dual e f fec t  regarding 

the residual Z f i e l d  across the null plane. Lastly the interaction of 

the t a i l  f i e l d  w i t h  the mon i s  discussed i n  terms of the mechanism of 

Sonett and Colburn. 

The t a i l  i s  found regular t o  distances greater than 82 Re. 

Generally the values are i n  the neighborhood of 10 t o  20 

A d i s t inc t  skewing of the f i e l d  l ines  away from the solar-antisolar 

The r ad ia l  gradient can 

A 

INTRODUCTION 

This paper reports preliminary findings from the Ames Research Center 

. magnetometer experiment on the Ekplorer 33 s a t e l l i t e  regarding the 

extended magnetic t a i l  of the earth, evidence f o r  reconnection of f i e l d  
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l i nes  a t  t h e  neutral  plane, f i e ld  magnitude gradients i n  the  t a i l  s t ruc ture  

and an early comparison of magnetic a c t i v i t y  observed on earth and i n  t h e  

ta i l .  

has the  highest apogee s o  far achieved by an ear th  s a t e l l i t e .  

apogee w a s  4.37xlO 

Variations i n  the  orb i t  parameters due mainly t o  lunar perturbations do 

not allow a statement of invariant o r b i t a l  parameters. 

of t he  major axis of t h e  f i r s t  orbi t  was 118 deg measured clockwise look- 

i n g  towards the  south e c l i p t i c  pole, with 0 deg longitude along the  earth- 

sun l ine;  t he  corresponding ec l ip t ic  l a t i t ude  was 3.p  s. Special proper- 

t i e s  o f  the orb i t  of value f b r  the present study a r e  the  extreme distance 

from the  earth, t he  long period, and the  i n i t i a l  f i r i n g  in to  the  rearward 

direct ion away f romthe  sun. Fig. 1 shows the  first eleven orb i t s  extend- 

ing  over five months. 

edges of t he  bow wave and magnetopause are shown. 

favorable for spa t ia l ly  extended examination of t h e  magnetic t a i l  past  

t he  orb i t  of the moon. 

The Explorer 33 s a t e l l i t e  was launched on Ju ly  1, 1966; the  orb i t  

The i n i t i a l  
5 4 lan (68.55 Re) and perigee 5.10~1.0 lan (8.00 R e ) .  

Ec l ip t ic  longitude 

The approximate mean posit ions o f  t he  forward 

Coverage i s  especially 

During August and September alone nearly three weeks of relevant data  

are available. These are examined f o r  the  general extended topology of 

t h e  ta i l ,  for d e t a i l s  of the null plane crossings and for  storm related 

modifications. 

Since the discovery of the  t a i l  s t ructure  by Ness and co-workers, 

t h e  general configuration has been mapped out (Ness, 1965; Fairf ie ld  and 

-> Ness 1967), cer ta in  storm related phenomena have been discussed 

(Behannon and Ness, 1966) and the  nu l l  sheet has been examined i n  d e t a i l  

{Sgelcer z ~ d  Nessj 1967) and correlated with both low energy (Bame e t  al., 
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1966; Bame e t  al., 1967) and high energy (Montgomery e t  al., 1965; 

Anderson, 1965; Anderson and Ness, 1966; hrayama, 1966) p a r t i c l e  data. 

More recently it i s  reported that a wake extension of t he  t a i l  i s  found 

t o  distances approaching 10  3 Re (Wolfe e t  al., 1967). This l a t t e r  find- 

ing suggests t a i l  breakup a t  lesser  distances, the  data having strong 

time-variant properties. The evidence from t h e  V e l a  s a t e l l i t e s  indicates 

t h a t  an asymmetry exists i n  the  plasma temperature, with t h e  higher values 

found on the  dawn side of t h e  tail.  

of t h e  t a i l  f i e l d  a re  described by Behannon and Ness (1966) during times 

of enhanced K I n  the present paper t h e  discussion i s  l imited t o  the  

t a i l  proper; the extended bow shock of t he  earth observed a t  lunar distance 

i s  reported i n  a subsequent publication, as a r e  d e t a i l s  of the  far t rans-  

i t i o n  region. 

General increases i n  the  intensi ty  

P. 

For the present work t h e  preferred coordinate system i s  solar  mag- 

netospheric. Separation between earth centered control of the  t a i l  and 

solar wind control i s  discussed la te r .  

X i s  ident ica l  i n  the  s o l a r  magnetospheric and so lar  e c l i p t i c  systems 

and the  def ini t ion of t r a n s i t  through the neutral  sheet uses t h i s  variable. 

However the  r ad ia l  coordinate, 

s m  

INSTRUMENTATION 

The Ames magnetometer i s  a t r i a x i a l  f lux gate, constructed from designs 

developed jo in t ly  by NASA/Ames Research Center and the  Honeywell Radiation 

Center. The instrument has certain novel features used f o r  the  f irst  time 

and so a br ie f  description of  the system i s  given. 

assemblies consisting of t h e  boom mounted package and the  electronics 

mounted i n  the in t e r io r  of the  spacecraft. The former consists of t he  

There a re  two primary 
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three sensor elements, S1, S2, S3, and a thermal motor f o r  rotat ion of the 

S;1 and S3 sensors through 90° once approximately every twenty-four hours. 

The rotat ion i s  such as to  interchange the axes o f  the tm  sensors with 

respect t o  the spacecraft allowing inf l igh t  determination of the sensor 

offsets .  The S 3  sensor i s  oriented i n  the spacecraft spin axis direction 

on one dag while the S2 sensor i s  oriented i n  the anti-spin axis direction 

the next day. 

temperature of the housing due t o  different solar aspect. Also included 

i s  a thermistor f o r  temperature monitoring of the asseuibly, and a sensor 

posit ion detector fo r  verification of the direction of the twr, sensors. 

The th i rd  sensor i s  oriented radially and i s  fixed i n  spacecraft coordi- 

nates. I n  summary the three sensors, each having the response of a f ree  

space dipole are mounted mutually orthogonally with one along the spin 

axis, and the other tm orthogonal i n  the spin plane. 

The thermal motor i s  dual t o  compensate f o r  changes i n  

The magnetometer block diagram i s  shown i n  Fig. 2. The design i s  

of the null type with feedback providing the nul l  and the output signal. 

Calibration signals are injected into the feedback loop f o r  ver i f icat ion 

of the scale fac tor  of the instrument. 

Signals f r o m  those sensors munted i n  the spin plane of the spacecraft 

are in t r ins ica l ly  spin mdulated, whereas the spin axis sensor signal contains 

Fourier components generated exclusively by the natural  hydromagnetic radiation 

f i e l d .  The spin modulation problem i s  especially severe i n  the present case 

since the telemetry bandwidth i s  insufficient f o r  ground s ta t ion  demdulation 

which can be shown to  be imperfect at best .  We therefore include a pa i r  of 

quadrature -synchronous phase -demdulators f o r  rec t i f ica t ion  of these signals. 
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The reference direction i s  obtained f r o m  a sun pulse. 

then ident ica l  i n  format corresponding to  the type of signals obtained from 

The three outputs are 

a nonspinning spacecraft. 

magnetic signals and the c r i t e r i a  for spectral  'purity, the reader i s  referred 

For the basic theory of spin modulation of hydro- 

to  the l i t e r a tu re  (Sonett, 1966; Fredricks, Greenstadt, and Sonett, 1967). 

The complete system consisting of magnetometer, spin demodulator, 

and a l i a s  f i l t e r  and storage buffer system is shown i n  Fig. 3. The 

inclusion of the buffer storage i s  required t o  conserve bandwidth while 

observing the stringent a l i a s  contamination constraint  required f o r  the 

experiment. 

are sampled sequentially while the axes are measured instantaneously w i t h  

The three ranges used me k20, +60, and +200 gamma. These 

respect t o  a l l  effective time constants. 

one-hour averages near the ear th  are taken w i t h  the 20 gamma range. 

In  t h i s  paper a l l  data except ;4 

Bypass 

data, which i s  not spin-demdulated, allows checking demodulator operation 

i n  space. 

For calibration purposes the rotation of the sensor elements together 

with the imposition of a calibration current r a s t e r  allows both the scale 

fac tor  l ineaz i ty  and the of fse t s  t o  be determined. Calibration signals 

are used during the general flipping cycle once per day. 

The pre-alias f i l t e r  used was a compromise between l inear  phase 

response and adequate protection against folding the higher frequency 

spectral  components into the passband of the system which, f o r  each range, 

has a Nyquist limit of 0.08 cps. 

t i on  from a white noise o r  f l a t  power spectrum background i s  1%. 

A t  t h i s  frequency the a l i a s  contribu- 

Thus 

the response of the system droops appreciably at  the higher frequencies 

but  this effect  i s  eas i ly  removed i n  spectral  analysis by recoloring the 



spectra. For most of the  data i n  the present paper t h i s  problem i s  i r r e l e -  

vant. Data giving neutral  sheet structure i s  f i l t e r e d  as  described, however. 

For some of the discussion, the question of  sensor of fse t  becomes 

relevant since residuals appear i n  t h e  nu l l  sheet crossing. We therefore  

consider these effects now. 

the f irst  t h i r t y  weeks of operation discloses a d r i f t  of 1.0 gamma i n  

sensor S 

t i o n  0.15 gamma. 

same value f o r  the  same time period except t h a t  during a spacecraft turn- 

off due t o  bat tery problems near  the  end of calendar year 1966, an irre- 

vers ible  change of 0.85 gamma took place. 

w a s  spending most of i t s  time i n  interplanetary space, so t a i l  data  was 

not available. 

discussed here. A n  additional check upon the  instrument can be obtained 

from study o f  t he  switching spectrum associated with small var ia t ions i n  

the  leakage r a t e  of the  f i e l d  effect  t r ans i s to r s  used i n  the  buffer storage 

system. From these data it i s  possible t o  asser t  tha t  leakage e f fec ts  

a r e  l e s s  than 0.2 gamma, 

t h i s  preliminary examination the s t a t i s t i c s  of the switching tone errors  

a r e  not suf f ic ien t ly  well knownto provide the  description f o r  addition 

of these errors  t o  those of t he  random variat ions i n  the  probe of fse t s .  

The worst case assumption tha t  the former i s  a steady s t a t e  e r ror  super- 

imposed upon the  random variations o f  t he  probe of fse t s  yields an overal l  

e r ro r  of  l e s s  than one d i g i t a l  window (0.4 gamma). 

with the  spin demodulation system a re  generically connected with angular 

oTrsetso 7' - - -  ---- 
I K ~ C ~ C  a L c  ki~.,.r, f r 5 m  lshnratory cal ibrat ion t o  be of  order 2-3 

A tabulation o f  sensor of fse t  his tory through 

upon which i s  superimposed a random variat ion of standard devia- 3 
Sensor S has a random variat ion of approximately the  2 

By t h i s  time the  spacecraft 

The regular variations have been removed from the  data 

the  equivalent of 1/2 d i g i t a l  window. I n  

Effects associated 



degrees or 0.05 radians, and therefore a re  unimportant i n  t h e  assessment 

given here. 

ORBIT AND COORDINATE SYSTEM 

The primary coordinate system used i n  the  analysis i s  solar-magneto- 
+ 

spheric where X i s  defined as the  unit vector along the radial l i n e  from 

the  ear th  t o  the  sun with posi t ive sense towards the  sun. 

form the  remaining two u n i t  vectors o f  t he  mutually orthogonal s e t  with 

Z i n  the  plane containing X and a centered ea r th ' s  geomagnetic dipole 

axis,  and posi t ive Y i n  the  sense opposed t o  the  planetary motion. Thus 

sm 
-b 

Ysm and 2sm 

+ + 
sm sm 

-b 

s m  
4 -b + - so tha t  ?'ysm l i e s  i n  the  magnetic equatorial  plane. s m  'srn - 'sm 

( In  the  subsequent discussion the subscripts a r e  dropped f o r  simplicity. ) 

Therefore the magnetospheric system displays two periodic dependences, 

the da i ly  wobble of t he  ea r th ' s  magnetic dipole axis and the  yearly wobble 

of t he  ear th ' s  spin axis, both with respect t o  t h e  ec l ip t i c .  
-+ 

The direct ion of X i s  invariant t o  the  so la r  magnetospheric and solar  

e c l i p t i c  coordinate systems. Therefore X-components o f  magnetic f i e l d  

or spacecraft posit ion vectors a r e  ident ical  i n  the  two coordinate sys- 

tems. However, resolution of t he  Y- and Z-components of vectors w i l l  

vary i n  the  two systems, and a planar coordinate rotat ion i s  required. 

Consideration of such rotations i s  necessary i n  the  nu l l  sheet study pre- 

sented l a t e r .  

The annual motion of t h e  earth ro ta tes  the da i ly  mean magnetic dipole 

equator of the ear th  through a range o f  223 1/2 degrees. 

nearly s i x  months of these observations, t he  rotat ion w a s  from the mini- 

mum vdut: to near= t he  mximum as the  t i p  of t h e  ea r th ' s  axis varied 

During the  
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from the  summer t o  nearly the w i n t e r  value. 

the da i ly  wobble of 511.7 degrees. 

diurnal effect  i s  seenD Also the apparent trend i n  the  coverage of the 

t a i l  i n  magnetospheric coordinates is due t o  the annual var ia t ion which 

for the  l a t e r  o rb i t s  of t h e  series used here takes t h e  spacecrart t o  

progressively more negative values o f  Z. 

of both Y and Z i s  effected. 

Superimposed upon t h i s  w a s  

Thus i n  o r b i t a l  p lo ts  (Fig. 11) a 

Thus a sweep over a large range 

The present work i s  res t r ic ted  i n  the  sense tha t  the  re la t ion  of 

e c l i p t i c  t o  magnetospheric coordinates i s  not complete. Our evaluation 

of the re la t ive  control of e i the r  coordinate system i s  then based upon 

crossing of the  nu l l  plane. 

of t h e  solar wind, the  comparison is not complete. O u r  basic intent  i s  

concerned with the  nu l l  plane i t s e l f  and gradients i n  t h e  t a i l  ra ther  

than t h e  control problem which is  t reated elsewhere. 

Since t h i s  i s  determined par t ly  by the  effects  

DEFINITION OF THE FIELD AVERAGE 

A vector average can be expressed i n  a t  least two d i s t i n c t  manners. 

Sometimes the  average over magnetic f i e l d  samples i s  defined by 

An exact def ini t ion of the average direct ion angle of the  kth component of t he  

f i e l d ,  ik, is  given by 
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i s  a more accurate def ini t ion of  t h e  average f i e l d  magnitude. For pur- 

poses of composing a projection of the f i e l d  in to  a plane f o r  graphical 

representation it i s  required t o  use both (1) and (3)  because a c lear  

d i s t inc t ion  exists between the  two methods when the  f i e l d  i s  not time 

stationary,  The most extreme case is  a uni t  vector whose direct ions are 

uniformly dis t r ibuted over a 417 solid angle; equation ( 3 )  yie lds  a uni t  

magnitude while (1) yields a zero magnitude with an unbounded error .  

Sample analyses f o r  five minute averages show tha t  fo r  moderately disturbed 

data  swaths i n  interplanetary space t h e  competing methods can yield per- 

centage errors  of 3O$; f o r  corresponding averages i n  the  sheath 30% 

er rors  a re  common. 

swaths of t a i l  data using the competing methods and Fig. 5 shows the  

average difference between the  magnitudes averaged over varying time 

intervals .  Except when the  s a t e l l i t e  frequently cuts through the  n u l l  

~ i g .  4 gives average f i e l d  magnitude e r rors  i n  two 

sheet average percentage errors f o r  t a i l  da ta  are generally less than 2$. 

The er ror  vanishes f o r  a time stationary f i e l d  but t h e  difference i s  s ig-  

nif icant  even fo r  very l o w  frequencies provided tha t  the  spectral  compo- 

nents are contained within the  bandwidth of the  averaging frequency. 
/ 

U s e  of Eq. (1) always depresses the magnitude values. 

I n  t h e  following sequence of discussions e i ther  o r  both Eqs. (1) and 

The averaging times are d w a y s  o f  one hour o r  longer dura- ( 3 )  are  used. 

t ion ,  except f o r  t he  nu l l  sheet study. 
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GENERAL FORM OF THE TAIL FIELD 

Only a few magnetic f i e l d  values f o r  which a t  l e a s t  one component 

i n  the spacecraft frame of reference exceeds 20 gamma are used i n  the 

analyses of t h i s  paper. Consequently every t h i r d  vector is  used, the 

others representing the 60 and 200 gamma ranges. Thus the f i e l d  data 

i s  bounded t o  values >7 Re. 

magnitude composite averages of the magnetic f i e l d  south of the n u l l  

plane taken over o rb i t s  1, 4, 5, 6, 7 and 8 representing over 12 weeks 

of data i n  the second ha= of 1966. 

intervals  and give a representation of mst of  the t a i l  f i e l d .  

Fig. 6 gives projections of the component- 

The averages are over three hour 

The general tendency of the f i e l d  direct ion t o  l i e  toward o r  away 

from the solar  direct ion agrees with preirious r e su l t s  (Ness e t  al., 1967). 

I n  Fig. 7 we show the f i e l d s  north o f  the null plane. 

configuration i s  t a i l - l i k e .  The primary new features  i n  these data 

show the ordered extension of the  t a i l  t o  distances as great as the 

distance of the projection of s a t e l l i t e  apogee into the X - Y o r  solar- 

magnetospheric plane, i .e .  -80 &, 

distance which suggests imers ion  of  the moon during the full mon phase. 

The breadth of the f i e l d s  i n  the X - Y plane implies t ha t  t a i l  occultation 

of the moon extends over some 30 degrees of the lunar orbi t .  

r e s u l t s  f r o m  the 40 

80 Re r ad ia l  distance. 

.Again the general 

Thus the t a i l  f i e l d s  extend t o  a 

This suggestion 

lateral. extension of the projected t a i l  f i e l d  a t  

The dai ly  and annual osc i l la t ion  of the o r b i t  i n  magnetospheric 

coordinates indicates tha t  the data shown are  representative of the t a i l  

cross  section and r ad ia l  extension. 



12 

Examination of Fig. 7 shows that  the f i e l d  direct ion tends away from 

the ant i -solar  direct ion on the dusk side. 

result i s  an unexplained o f f se t  i n  one or mre of the magnetometer sensors 

since such a b ias  would affect t he  la rger  near-earth values less .  I n  the 

o rb i t s  of Fig. 7 the geometry fawrs closer approach t o  the n u l l  sheet on 

the dusk side. One poss ib i l i ty  f o r  the skew therefore i s  tha t  it gmws 

with diminishing distance from the n u l l  plane. The skewing i s  discussed 

further i n  the next section. 

It i s  not l i k e l y  t h a t  this 

The la rges t  features  show that the ordered f i e l d  extends beyond 80 Re 

i n  the ant i -solar  direct ion and that the projection of the  lateral  exten- 

sion of the  f i e l d  a t  these distances i s  of order 40 Re. A similar exten- 

sion of the dis tant  t a i l  f i e l d  i s  evident i n  the direct ion normal t o  the 

plane, i .e.,  Z. 

are generally w e l l  ordered and regular on the scale of time used f o r  the 

aver aging. 

A s  seen especially i n  Figure 6, the f i e l d s  i n  the t a i l  

SKEWING OF THE F1EI;D AWAY FROM THE ANTI-SOLAR DTRECTION 

We consider fur ther  here the apparent skewing o f  the f i e l d  shown 

especial ly  i n  Fig. 7. 

t o  skewed values when i n  the neighborhood of the n u l l  plane i s  examined 

f'urther , 

Our ea r l i e r  statement t h a t  the data appears biased 

On o rb i t  1 the spacecraft locus swings wide of the t a i l  a t  the ear ly  

p a r t  of the ascending leg. 

not l e s s  than 25 g m a .  

tendency f o r  the f i e l d  t o  ro ta te  away from the X axis. 

For IY1 < 12 R, the f i e l d s  are anti-solar and 

Beyond t h i s  distance there appears a general 

For nearly all 
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these data the s a t e l l i t e  i s  within 5 Re of the X-Y plane. 

the flank the t r a n s i t i o n  region i s  entered. 

i s  characterized by increasing angular spread from the X axis reaching a 

maximum of over 45 degrees just prior t o  the penetration. 

A t  -30 R, on 

U n t i l  t h i s  time the f i e l d  

On o r b i t  3 during the ascending l eg  the spacecraft was always within 

10 Re of the X-Y plane. 

o r b i t  the f i e l d  always displayed a direct ion away from -X. 

characterized by increasing angle as the f i e ld  magnitude increases nearer 

the eazth and the spacecraft i s  newer the null  plane. 

as 45 degrees are encountered a t  a r ad ia l  distance o f  order  20 Re. 

apogee the deviation i n  angle decreases to  -5 degrees. However the o rb i t  4 

data d i s t inc t ly  show tha t  upon crossing of the nu l l  plane the angle changes 

sign with respect t o  the -X direction. Thus the skewness is  characterized 

by an angular change of -10 degrees. 

For the week during the ascending par t  of the 

The form i s  

Angles as large 

Near 

A strong d is t inc t ion  i s  made in o r b i t  5 where a l l  measurements used 

A dis t inc t  re la t ion  appears i n  t h i s  case here are taken when 2 > 10 Re. 

favoring skewing nearer the nu l l  plane. 

Orbit 6 fur ther  demonstrates the condition of skewing f o r  a case 

where greater values of  -Z are encountered. 

of t he  n u l l  i s  famred but f o r  the measurements closer t o  ear th  ( 1 Z1 < 20 Re) 

and the n u l l  plane, the tendency t o  skew i s  strong as i n  the case of 

o r b i t  3. 

Here again the neighborhood 

Dessler and Juday (1965) have discussed the e f fec ts  of planetary 

ro ta t ion  upon the form of the geamagnetic t a i l  and have concluded tha t  

the spin leads t o  twisting of the t a i l  f i e ld .  The sense of the twist i s  
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such tha t  i n  the northern half of  the t a i l ,  a net contribution t o  the 

f i e l d  i n  the direction of p l ane taq  motion i s  added on the nu l l  side of 

the lobe, and a contribution i n  the opposite direction i s  added on the 

top. The reverse i s  the case f o r  the southern half of the t a i l .  Our 

data disclose tha t  the sense of the perturbation magnetic f i e l d  which 

muld  account f o r  the skewing is  i n  the direction of planetary m t i o n  on 

both sides of the nu l l  plane and therefore cannot be accounted f o r  by 

the rotat ion of the earth. 

skew by the addition of a current loop passing through the two lobes of  

the t a i l  on e i ther  side of the null  plane. The current flows earthwards 

i n  the lower o r  southern lobe and amy from the ear th  i n  the upper lobe. 

We cannot s t a t e  what the closure path would be and therefore the model 

lacks cer ta in  necessary details .  

sysSem must be specified. The decrease of f i e l d  skewing away from the 

n u l l  plane indicates that the model suggested muld  require a decrease 

i n  the current density away from the nul l  plane. 

It i s  possible to  account f o r  the observed 

On the other hand the equivalent current 

Skewing of t a i l  f i e lds  could also be evidence f o r  expansion of the 

s i z e  of the t a i l  with increasing geocentric distance. On the dawn side, 

such skewing would s i m l a t e  an added f i e l d  component i n  the direction of 

planetary motion i n  the southern lobe, and i n  the opposite direction i n  

the northern lobe. T h i s  configuration b e s  not agree with observations 

e i ther .  

A specif ic  cause of the observed skewing i s  not available. The obser- 

vations could be explained if f i e l d  twisting discussed by Dessler and 

Judax (1965) were dominant a t  the northern edge of the nu l l  sheet, and 

an ef fec t  h e  LU t a l l  dl.v~rg:ezlc~ -.s dominant a t  the southern edge. 



RECONNECTION AND MERGING OF FIELD LINES 

A sensit ive test f o r  reconnection of f i e l d  l i nes  i s  found from 

examination of the residual Z component of f i e l d  often associated with 

crossings of the nu l l  sheet. 

a reversal  i n  the algebraic sign of &. This def ini t ion has the advant- 

age of independence from the ecliptic-magnetospheric coordinate systems. 

(An al ternat ive def ini t ion would use minima i n  131 as a sign of the 

crossing.) 

major conclusions are not a l tered if the al ternate  def ini t ion i s  used. 

Since many of the crossings display strong time variations, i,e,. 

reversal  several times before the null neighborhood i s  l e f t  behind by 

the s a t e l l i t e ,  we strengthen the definition used here by the following 

requirements; B, must change sign f o r  a t  l ea s t  tm s e r i a l  vector measure- 

ments, i.e. 12 seconds, and the reversal of Bx must equal o r  exceed 0.5 

gamma f o r  one of the two measurements. 

plane t o  be tabulated more than once, and generally the question of 

multiple crossings cannot be identified. Our query i s  independent of 

the  nuniber of adjoining crossings however. 

The quantity investigated here i s  the algebraic sign of the Z compo- 

The cr i ter ion used here f o r  a crossing i s  

O u r  c r i te r ion  i s  tha t  used by Speiser and Ness (1967). Our 

The rule  allows a fluctuating nul l  

nent a t  the nu l l  crossing. 

crossings from the f i r s t  orbit .  

of a negative residual  i n  B,. 

occur 20 additional negative values. 

17s of the Z components are negative. 

Fig. 8 shows a swath of 127 samples of nu l l  

Until 35 Re there i s  only one example 

Beyond this point i n  r ad ia l  distance there 

Thus the r a t i o  Bz(+)/Bz(-) i s  5.8; 

AddttionaL euldeace $or both posit ive 
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and negative crossing excesses i s  found i n  the swath from August 16 t o  

26 again covering most of o r b i t  4; during this time the r a t i o  i s  6.7. 

The th i rd  example we show i n  Fig. 9 discloses a r a t i o  of B,(+)/B,( -) = 2 

f o r  data f r o m  Septertiber 6 t o  10 (i .e.  about 33s of the crossings show 

negative excess). I n  a l l  the data there i s  a strong tendency f o r  the 

negative values t o  be found a t  the greater distance from the ear th  (such 

ac t iv i ty  charac te r i s t ica l ly  starts a t  -35 R e  on o r b i t  1). 

The occurrence of both posit ive and negative excess i n  the Z compo- 

nent can only mean t ha t  loops of f i e l d  are witnessed crossing the n u l l  

region. 

o r  kinks form closed loops in  the f i e l d  l ines .  

be evidence f o r  loops where the lbop being observed i s  the outward 

par t  of a pa i r  of loops formed i n  the severing. This i s  shown 

diagrammatically i n  Fig. 10. The enhanced s t a t i s t i c a l  occurrence of 

posi t ive values suggests t ha t  tm processes are seen. The f i r s t  i s  the 

severing o r  kinking of f i e l d  and the second, suggested also by the 

r a d i a l  gradient of t a i l  f i e l d  magnitude discussed l a t e r ,  i s  the continual 

presence of f i e l d  loops pulled out from the magnetosphere. The l a t t e r  

do not suggest severance, but  display only the natural  po lar i ty  

associated with the magnetospheric f i e ld .  

a par t i t ioning of loops where the  bulk of the loops are a par t  of the 

drawn out magnetospheric f i e ld ,  w h i l e  the  remainder are connected with 

the severance of the  r a d i a l  tubes of flux and the formation of an equal 

f r ac t ion  of posit ive and negative loop segments. 

i s  correct depends upon consider&ly wre data than available to us. 

the  other hand it i s  G i f Z i c u l t  to esnst~~ct a_ mndel other than the one 

Either the radial f i e l d  i s  severed and closed loops are formed, 

The negative cases could 

On t h i s  bas i s  there appears 

Whetlzer t h i s  hyp thes i s  

On 



proposed i n  order t o  explain the  negative po la r i t i e s  frequently seen. 

The idea of f i e l d  severance i s  a part  of mst current theories  by which 

hot plasma i s  carried in to  the  magnetosphere. 

observations lend support t o  the poss ib i l i ty  of rapid reconnection of 

f i e l d  across n u l l  surfaces as  proposed by Piddiwton (1960), W o r d  e t  al. 

(1965) and Coppi e t  al. (1966). 

O u r  findings can be examined with respect t o  the open and closed 

We believe t h a t  these 

magnetospheric models (Johnson, L960). 

at the  present time f o r  a complete assessment, but  a cursory examination 

strongly favors the magnetosphere which i s  open f o r  a long distance. 

(The question o f  connection t o  the interplanetary magnetic fieLd i s  not 

From 

Insuff ic ient  data are available 

statement of openness hinges upon the  t a i l  length.) 

apparent t h a t  most o f  the  crossings of the n u l l  plane are 

accompanied by a res idual  Z component, so t rue  nulls are  r a re ly  found. 

However the  f i e l d  does decrease which suggests t h a t  f r e sh  f i e l d  i s  being 

brought out into the t a i l  continuously. The observation of posit ive and 

negative Z excesses fur ther  suggests t h a t  merging also occurs regularly 

near the n u l l  sheet. The colnbination indicates t h a t  the t a i l  i s  often 

e l ec t r i ca l ly  active there. 

a substant ia l ly  open or closed structure. Rather the s t ructure  near the 

n u l l  sheet varies f r o m  place to  place, and i s  patchy. 

The geometry does not strongly favor e i ther  

Orbit 4 i s  most favorable f o r  observations of the  type discussed 

The regions of the  o r b i t  over which useful n u l l  crossings took 

The heavy l ines  indicate the  locations of 

here. 

place i s  shown i n  Fig. 11. 

the crossings and the l i g h t  backgrounds the o rb i t  loci .  

found during a l l  par t s  of the  outbound leg, with l i t t l e  correlat ion with 

Crossings are 



the daily wabble. 

apogee. 

n u l l  plane should rotate  about the X axis,  Thus f o r  t h i s  time we expect 

a tjpping of the sheet forward into the direction of planetary motion. 

The dusk side w i l l  be mre northerly than the down half of the ta i l .  

Thus on the outbound leg the n u l l  sheet i s  favored. 

However, the inbound crossings are found only near 

Except f o r  variations i n  the direction of the solar  wind, the 

The other two cases f o r  which data i s  presented also display the 

effect  t ha t  the outbound leg of the o r b i t  samples mll  plane crossings 

m r e  frequently than the inbound leg. 

shows no nu l l  crossings and o rb i t  3 only 20. 

nu l l  crossings as the spacecraft was i n  the t rans i t ion  region on the outbound 

leg. 

Because of these effects  o rb i t  2 

Orbit 6 data do not provide 

Finally we report a tendency for equality of polar i ty  dis t r ibut ion 

newer the t rans i t ion  region. 

excesses as lmge  as 10 gamma are seen i n  the flanks of the t a i l .  An 

increase i n  southward crossings with distance i s  also apparent i n  the 

other  two cases. 

before exit ing the t a i l ,  and our conclusion does apply there. 

This i s  especially evident i n  Fig. 8 where 

However, t he  f i r s t  o rb i t  does not reach to  great distance 

THE RELATION OF Kp AND THE MAGNITUDE OF THE FIELD 

Behannon and Ness (1966) have reported positive correlations of increased 

t a i l  f i e l d  magnitude with Kp, the three-hour range planetary magnetic index. 

I n  Fig. 12 we give an example of the re la t ion  of % t o  the magnitude of 

the t a i l  f ie ld .  

center of the earth. 

By coincideiics, hlgkzr  F 

southern hemisphere during the times of Fig. 12. The res t r ic ted  

A l l  data are a t  distances more than 70 R e  from the 

Northern and southern hemisphere data m e  distinguished. 

occurred while the spacecraft was i n  the 
1, 



b .  . 
I .  

r ad i a l  range eliminates t h e  e f fec t  o f  r ad ia l  gradients from the  p lo t ,  

Also the  data i s  chosen t o  eliminate regions near the nu l l  plane t o  

obtain a more representative view of  t h e  core of the  t a i l  i n  both the  

northern and southern hemispheres. 

f rom +l2.3 t o  -13.3 Re. Values of 

There i s  a general trend t o  encounter higher t a i l  f i e lds  with la rger  

values of K However, the  spread of values shows tha t  the  re la t ion  

i s  not clear.  

occurred for  K 

the f i e l d  w a s  17 gamma. 

closer t o  t h e  earth. 

Values o f  Z f o r  t h i s  data range 

encountered vary from Oo t o  6 - . 

P* 
For example the  largest  t a i l  magnitude here of -20 gamma 

took place when = 3+ while the largest  value of K = 6 
P P -  

Similar trends a r e  evident i n  p lo ts  of data 

Cursory examination o f  the  plot suggests t h a t  t he  re la t ion  con- 

necting K and B is  non-linear. 

Fig. 13 where the  values of B a r e  plot ted against  a 

la rger  as expected fo r  a l i nea r  plot. 

be said a t  t h i s  t i m e  t o  indicate  an increase of B with magnetic ac t iv i ty .  

The values of a 

o f  Fig. 1 2  using the  relat ion given by Hirshberg (1965), log a 

A more l i nea r  relationship i s  shown i n  
P 

The spread i s  
P* 

However the  dependence can only 

of Figure 13 have been obtained f romthe  values o f  K 
P P 

= O.25K + 0.4. 
P P 

THE RADIAL GRADIENT 

The magnitude of the  f i e l d  i n  t h e  t a i l  varies f o r  the  data sample 

used between the  extremes of  4 t o  4-0 gamma. 

t o  take on values more nearly from10 t o  20 gamma. 

i n  Fig. 14. 

viously (Ness, 1965; Ness e t  al., 1967; Fa i r f ie ld  and Ness, 1967). 

v a i - ~ e s  i-epsrt& h e r e  correspond t o  r ad ia l  distances from 10 t o  80 Re, and 

Generally the  f i e ld  appears 

These data a re  plot ted 

These values are  qual i ta t ively similar t o  those reported pre- 

The 
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a definite gradient i s  observed. All data used i n  the examination of the 

rad ia l  gradient s a t i s f i e s  the t e s t  that % 5 2+ f o r  the period up to  6 

hours after the observations. Also one-hour averages including nu l l  plane 

crossings were eliminated because the change i n  magnetic f i e l d  direction 

across the neutral  sheet causes the average f i e l d  magnitude to  be reduced. 

The data are averages of 1 to 10 hourly average values, depending on 

the m u n t  of spacecraft r ad ia l  mt ion  dtiring the t h e .  No averages 

i n c l u d e t t m w h e n  the spacecraft radial  posit ion i s  different  by mre 

than 2 ear th  rad i i .  

and negative pointing f i e l d s  i s  separated according t o  the so l id  (+) and 

The data from the northern and southern, or posit ive 

open ( - )  points. 

f o r  the tm regions of space. 

There i s  no clear dis t inct ion i n  the observed gradient 

A weighted least-squazes f i t  of the data of Fig. 1 4  to  both a power 

l a w  and exponential discloses l i t t l e  choice. The values we report f o r  

the equations are 

-0.74 * 0.01 131 a R  

fo r  the power law and 

f o r  the exponential. 

(power l a w  f i t )  i s  0.865 (0.916 with the wfldgst point excluded). 

correlation coefficient between I n  B and R (exponential f i t )  i s  0.863 (0.914 

with the wildest point excluded). 

the bes t  f i t  comes par t ly  from the near ear th  values of the f i e l d  which 

being high tend t o  b ias  the data upwards. 

The correlation coefficient between I n  B and In R 

The 

The poss ib i l i ty  t ha t  a power l a w  i s  

From the theore t ica l  standpoint e i the r  law can be thought t o  apply 

For example iT' tne t a i l  is ubs-asd t o  depending upon the model chosen. 
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essent ia l ly  be f r e e  of f i e l d  annihilation then any expansion as the  

distance f r o m  ear th  increases would follow a power l a w  dependence. 

the other hand loss of f i e l d  with a rate proportional t o  the f i e l d  

in tens i ty  s h u l d  be exponential, i.e. f irst  order. T h i s  lat ter state- 

ment would be based upon the simple case where the system i s  adiabatic 

and all energy l o s t  i n  the f i e l d  wouldbe t ransferred to  the plasma so 

tha t  the  pressure i s  constant. 

On 

The amount of data provided by the  f i rs t  few orbi ts  i s  insuff ic ient  

t o  es tab l i sh  without doubt the  existence of components of  gradient i n  the 

direct ions Y o r  Z. It was deemed advisable to  study t h i s  question within 

the constraints of the data i n  order t o  determine whether the radial 

gradient was contaminated. The reason f o r  possible contamination i s  tha t  

the o r b i t s  vary with respect t o  all three coordinates and therefore some 

d is t inc t ion  i s  required. 

taken under the constraints stated. These data are taken from a mixture 

of o rb i t s ;  the c r i t e r ion  i s  t h a t  the radial distance f r o m  ear th  be held 

t o  a small tolerance compared t o  the t o t a l  scale of the e f fec ts  being 

studied. 

i s  considered sepwately.  

f o r  the dusk edge f i e l d s  to  be smaller. The following analysis indicates 

t h a t  any such effect  a p w t  f r o m  a radial gradient i s  not s t a t i s t i c a l l y  

s ign i f icant .  

s tud ies  f o r  R > 70 &. 

system it does not appew likely tha t  the apparent gradients axe due t o  

coordinate effects ;  if they were, the e f f ec t  should increase with distance 

where the sol= wind muld influence the t a i l  geometry m r e .  

W e  show in Figs. 15, 16 and 17 the cross gradients 

Therefore, data f r o m  different  10 Re segments of r ad ia l  distance 

There appears a tendency i n  Figs. 15 and 16 

T h i s  apparent effect i s  not seen i n  the case of the transverse 

As a l l  these data are i n  the  s o l a r - m e t o s p h e r i c  
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A four vaziable multiple correlation analysis was performed on 708 

sepxrate hourly averaged geomagnetic t a i l  f i e l d  measurements. 

values are a l l  available from Ekplorer 33 i n  1966. 

data of Fig. 1 4  and corresponding data, f o r  % > 2+, but  exclude all neu- 

tral sheet crossings. 

The 708 

They include the 

The analysis produces regression and correlation 

coefficients,  given i n  Table 1, f o r  a l e a s t  squares f i t  of the 708 hourly 

averaged values to  B = A - m I n  R + b ap d C IY1 + D l Z l ,  where the 

multiple correlation coefficient of By  the f i e l d  magnitude, with the 

four variables R, ap, lYl  and l Z l  i s  0.801. 

Table 1. Results of multiple correlation analysis 
of t a i l  field magnitudes 

Regression coefficients P a r t i a l  correlation coefficients 

------------- A = 47.1 

m =  9.12 rBR0aYZ = 0.800 

b = 0.186 rBa0XYZ = 0.413 

c = -0.0772 rBY-Ra!Z = 0.148 

D = '-0.0159 rBZ*RaY = 0.062 

R i s  the geocentric r ad ia l  distance and 1Y1 and 1 Zl are  the absolute 

values of the transverse, solar-magnetospheric position coordinates. The 

values of a 

The regression and correlation coefficients are given i n  Table 1. 

u n i t s  of B aze y ;  the uni t s  of R, /Y1 and 121 are ear th  r a d i i .  

l a t i o n  coefficient of B with the three w i a b l e s  "p, IYI and lZl  alone 

i s  0.444. 

analysis, B = 47.08 - 9.119 In R, i s  plot ted on Fig. 14, together with 

the resu l t s  of power law and exponential rlts t o  t'ne iretii fm Y 

are obtained using the re la t ion  given by Hirskiberq (1965). 
P 

The 

The corre- 

The rad ia l  dependence alone from t h i s  multiple correlation 

< 2+ n g ~ v .  3 -  
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The mul t ip l e  c o r r e l a t i o n  r e s u l t  has almost as h igh  c o r r e l a t i o n  as t h e  

o t h e r  two. 

The smal l  va lues  of rBY-RaZ and rBZ'RaY on Table 1 show these  t a i l  

f i e l d  magnitudes a r e  not  s i g n i f i c a n t l y  c o r r e l a t e d  w i t h  1Y1 and l Z l .  

Murayama (1966) has analyzed Explorer l8 (IMP 1) e n e r g e t i c  e l e c t r o n  d a t a  

i n  t h e  geomagnetic t a i l ,  u s i n g  t h e  d i s t ance  from t h e  n e u t r a l  shee t ,  Zn, 

a s  an independedt variable. 

f i c i e n t s  f o r  t h e  Explorer  33 t a i l  f i e l d  magnitudes us ing  Zn are DZ 

and rBZn'aY = 0.0519, which a l so  i s  no t  a s i g n i f i c a n t  c o r r e l a t i o n .  

The small ,  non-s igni f icant  value of rBY-RaZ, a measure of  t h e  dependence 

The r eg res s ion  and p a r t i a l  c o r r e l a t i o n  coef - 

= -0.0132 n 

o f  B on IYI alone,  i n d i c a t e s  t h e  t a i l  f i e l d  magnitudes are uniformly 

d i s t r i b u t e d  t r a n s v e r s e  t o  t h e  t a i l  axis, when t h e  r a d i a l  g rad ien t  and 

effects o f  geomagnetic a c t i v i t y  are  considered.  This  suggests  t h e  t a i l  

f i e l d  magnitudes on e i t h e r  t h e  dusk o r  dawn sides are f a i r l y  uniform o u t  

t o  t h e  t a i l b o u n d a r y .  The suggest ion from Figs .  15 and 16 t h a t  t h e  

magnitudes are smaller near  t h e  boundary does not  appear from a mul t ip l e  

c o r r e l a t i o n  a n a l y s i s  which includes t h e  effect  of s o l e l y  rad ia l  g rad ien t s .  

S ince  t h e  value of rBZ*RaY i s  even smaller than  t h a t  of  rBY'RaZ, t h i s  

a n a l y s i s  g ives  no evidence f o r  a genera l  depression of t a i l  f i e l d  magni- 

t ude  wi th in  5 Re of  t h e  n u l l  sheet  ( l Z l  o r  lZnl - 0) as r epor t ed  by  

Anderson and Ness (1966) from Ekplorer 18 (IMP 1) data. 

inferred by Spe i se r  and Ness (1967) t o  be -lo3 km t h i ck ,  i s  an  except ion.)  

(The n u l l  shee t ,  

EXTENSION OF THE TAIL FIELD TO GREAT DISTANCE 

The p resen t  series of measurements of  magnetic f i e l d  extend t h e  

or&ized tall fie15 beyond luna r  d is tance  and t o  t h e  apogee of  t h e  o r b i t ,  
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i .e.  82 Re. This finding i s  i n  substantial  agreement with tha t  reported 

by Ness e t  al. (1967) from another magnetometer experiment aboard the 

same spacecraft. Further extension of t a i l  configuration i s  suggested 

by WoLfe e t  al. (1967) from measurements of plasma at  -lo3 Re from the  

earth.  

s t ructure  suggesting a magnetic wake. 

measurements represent the greatest  penetration into nominally ordered 

t a i l  f i e lds .  It appears l ike ly  that these measurements d~ not represent 

a terminus f o r  the ordered t a i l .  

These latter measurements from Pioneer 7 disclose a fluctuating 

A t  the  present time the Explorer 

A s  shown on Fig. 1, the earth 's  o rb i t a l  m t i o n  sweeps the s a t e l l i t e  

apogee through the tai l ,  which permits the extent of the t a i l  a t  apogee 

t o  be found. The exact value must await f'urther refinement of the cross- 

ings of the s a t e l l i t e  through the  magnetopause as the measurements are 

disturbed by f luctuat ion phenomena. However the ordered f i e l d s  of the 

t a i l  extend some 20 Re on the dusk and dawn sides though detailed exami- 

natior, may disclose some differences l a t e r .  These r e su l t s  are seen i n  

Figs. 6 and 7 which show composite presentations of a l l  1966 t a i l  data 

projected into the e c l i p t i c  plane. The mon should be immersed i n  the 

t a i l  f o r  some +15 degrees t o  e i ther  side of the X axis, o r  f o r  8.3% of 

i t s  o r b i t a l  period. 

Russian measurements appear t o  have disclosed a region of perturbed 

f i e l d  and plasma near the lunar surface (Gringauz e t  a l . ,  1966). 

c i en t  d e t a i l  i s  not available t o  recognize these measurements as asso- 

c ia ted  with the earth '  s magnetic t a i l ,  though Ness (1967) has pointed out 

that these data are not typical  of an interact ion with the solar  wind 

( the  mon was immersed i n  the t a i l  a t  the time 02 the c l s e r - d i  ons) . 

Suffi- 
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THE LUNAR INTERACTION WITH THE TAIL 

The primavy ef fec ts  of the immersion of the mon i n  the t a i l  f i e l d  

i s  the turnoff of the streaming solar wind and the change i n  the magnetic 

f i e l d  amplitude and direction. 

the motion of the Illson against the plasma i n  the t a i l .  

w e  assume tha t  the t a i l  plasma has zero bulk velocity. 

motion is  given by the o r b i t a l  motion of the mon about the earth,  -1.0 Inn 

sec'l. 

degrees t o  e i the r  p a r a l l e l  o r  antipaxallel  t o  the direct tan f r o m  the sun. 

The magnitude increases from the nominal value of 5 gamma f o r  the in t e r -  

planetaxy f i e l d  t o  as high as 1 5  gannna f o r  the t a i l  f i e l d  a t  the distance 

of the moon. 

The relative m t i o n  i s  now determined by 

For simplicity 

Then the re la t ive  

The magnetic f i e l d  changes from the idealized s p i r a l  angle of 45 

When exposed t o  the d i rec t  solar wind with nominal parmeters  of 

400 Jsm sec'l bulk velocity and a magnetic f i e l d  as quoted, the f r ee  

s t rean  motional e l e c t r i c  f i e l d  i s  &lo3 volts  m - l .  

the  mon is  governed by the internal  i n t r in s i c  e l e c t r i c a l  conductivity, 

and by the assumption tha t  whatever plasma s t r ikes  the lunar surface i s  

t o t a l l y  adsorbed, neutralized and re -emitted thermally, following the 

magnetospheric model of - Gold (1966). 

the moon m c t i o n s  as a unipo1a.r generator with the solar wind supplying 

the  brush action. If we assume cyl indrical  synrmetry, it i s  possible to  

compute the t o t a l  planetaxy current flowing i n  the mde described by 

solutions t o  the flmdamental equation f o r  the in t e r io r  potent ia l  which 

are expressed by Legendre polynomials. 

ally hot mon i n  the f ree  solar wind, the t o t a l  current i n  the P1 mode 

is  limited to  -lo5 amperes. 

The interact ion with 

I n  the m d e l  of Sonett and Colburn (1967) 

For the  P1 mde and a radiogenic- 
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The same reasoning applied t o  the  steady s t a t e  when the won  i s  

immersed i n  the t a i l  f i e ld ,  yields  a motional e l ec t r i c  f i e l d  f o r  a s t a -  

tionary t a i l  - lom5 volts m - l  and the planetary P1 current system i s  

reduced by tm orders. 

weak. 

mu ld  be infinitesimal. 

I n  t h i s  case the  interaction is characterized as 

Also the formation of a shock wave i s  inhibited; the largest  wave 

The conditions leading t o  the immersion i n  the t a i l  f i e l d  as a 

steady s t a t e  condition require substi tution of a Cowling current system 

f o r  the unipolar current. 

interplanetary to  t a i l  o r  the reverse. 

expected t o  take an appreciable time due t o  the general diffuseness of the 

magnetopause, the f i e l d  muld  fluctuate and the plasma muld al ternately 

be tha t  of the t rans i t ion  region and the t a i l .  Then the current systems 

m u l d  be determined by electromagnetic induction to  which the Cowling 

decay time applies. However even f o r  a re la t ive ly  conducting won, and 

i f  the conductivity were assooiated with a high tempeEature so tha t  the 

magnetic permeability were near the f r e e  space value, the "diffusion" 

time f o r  the magnetic f i e l d  i s  hardly more than LO2 sec. 

This case i s  v a l i d  during the  t ransfer  from 

During the t ransi t ion,  which i s  

A m r e  subtle condition arises from the instance when the o rb i t  of 

the moon intersects  the n u l l  plane, f o r  then the key panmeter f o r  the 

establishment of the unipolar system i s  also the Cowling constant. 

However even here the new conditions will be established i n  a time short 

t o  most relevant times. 

n u l l  intersects  the won f o r  an extended period of time, it is  clear  that  

the  current system which i s  established i n  the steady s t a t e  i s  a complicated 

w~~~~~~~~~~~ ef tk e i - 1 ~  i m i p l a r  one. 

However in  the special circumstance that  the 

_--- J Z O , .  --C-lhn 



I n  the  case of the intersection with the  nu l l  which i s  long lasting, 

the maxim e lec t r i c  f i e ld  i s  established across the nul l  plane because 

of the f i e l d  reversalD 

sects  t he  moon on i t s  equator, even the  P current system i s  modified. 

For e lec t r ica l ly  reasonable moons, the interaction i s  s o  weak tha t  the  

Unless t h e  symmetry i s  such that the  nu l l  i n t e r -  

1 

l o s s  factor, k, representing f i e ld  and plasma slipping t o  the  flanks 

of the  moon, approaches zero. The nul l  intersection with the moon must 

reverse the direct ion of the  e lec t r ic  f ie ld .  

of charge must be established i n  the in te r ior ,  a d  even fo r  the uniform 

moon, the  e l ec t r i c  f i e l d  i n  the in te r ior  i s  no longer uniform. 

sense of the charges deposited i n  the in t e r io r  depends upon the  directions 

assumed by the  f ie lds .  

This means tha t  a region 

The 

\ 
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FIGURE TITLES 

Fig. 1. Projections into the plane of the e c l i p t i c  and normal contain- 

ing the earth-sun l i n e  of the f i r s t  ll orbi t s  of Explorer 33 during 

July t o  December 1966. 

the effects  of  perturbations by the  moon during close approach of 

the spacecrart . 

The f i r s t  and eleventh orb i t s  clearly show 

Fig. 2. Block diagram of the magnetometer subsystem of the Ames instru-  

ment, showing driver, detector, and feedback blocks. 

Fig. 3 .  Block diagram of the complete mgnetometer including spin 

demodulators. 

Fig. 4. Examples of geomagnetic t a i l  data averaged over different  time 

intervals  and by the two procedures described i n  the tex t  correspond- 

i n g  t o  component and magnitude averages. 

a time ser ies  of the average value of the  f i e l d  magnitude. 

magnitude average and I the  average obtained by averaging of t he  

components. 

for  each of the three cases. 

Each of the three cases i s  

C indicates 

The difference i n  the magnitude i s  shown i n  the ordinate 

Fig. 5. Examp& of the error i n  the averaged f i e l d  for  the geomagnetic 

t a i l  using the  component method compared t o  the magnitude method. 

The nuniber of minutes per average i s  shown i n  the  abscissa. 

inclusion of null crossings is shown t o  significantly influence the  

value of t he  magnitude. 

The 

Fig. 6. Projections on the solar magnetospheric X-Y plane of three-hour- 

average magnetic f i e ld  vectors measured i n  the ear th ' s  magnetic tail.  

The data a re  from orbi ts  1, I!, 5 ,  6; 7 and 8 of Explorer 33, and were 



taken at times during July 1 t o  November 10, 1966 when the  spacecraft 

was i n  the southern half of the tail.  

magnitude averages and the  directions by component averages. 

The averages a re  obtained by 

Fig. 7. Projections on the solar-magnetospheric X-Y plane of three-hour- 

average magnetic f ie ld  vectors measured i n  the ear th ' s  magnetic tail.  

The data a re  from orb i t s  2, 3 md 4 of Ekplorer 33 and were taken at  

times during July 14 t o  A u g u s t  26, 1966 when the spacecraft w a s  i n  

the northern half  o f  the t a i l .  

as fo r  Fig. 6. 

The method of averaging i s  the  same 

Fig. 8. Z-component of magnetic f i e l d  a t  neutral  sheet crossings (when 

X-component reverses sign) during o rb i t  1 of Ekplorer 33.  

t i v e  location of the magnetopause i s  indicated by a dashed l ine.  

segment is  approximately 36 hours long. The location of the space- 

c ra f t  i n  solar magnetospheric coordinates i s  given at the  bottom of 

the graph. 

A tenta-  

The 

Fig. 9. Z-component of magnetic f i e l d  a t  neutral  sheet crossings (when 

X-component reverses sign) during orb i t  5 of Ikplorer 330 

of the  magnetopause is  indicated. 

The location 

Fig. 10. Idealized meridian plane representation of the formation of loops 

of magnetic f i e l d  near the neutral sheet i n  the  geomagnetic t a i l  by 

severing and reconnection. 

band. 

model i s  suggested by the discovery of both northward and southward Z 

residuals where the X component of f i e l d  reverses sign. 

The neutral  sheet i s  indicated by a shaded 

The longitudinal extent of the  loops may be limited. This 

Fig. 11. Plan and elevation view of o rb i t  4 of Eqdorer 33 i n  solar  

z?r?net.nspheric coordinates. Heavy portions of the orbi t  t race 
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indicate where neutral  sheet crossings (reversals of sign of 

X-component of magnetic f i e ld )  occur. 

the orb i t  traces.  

generally posit ive before 1104 UT on August 22 and generally nega- 

t i v e  afterwards. 

One day marks are  given on 

The sign of the X-component of the f i e l d  i s  

Fig. 12. 1966 Explorer 33 one hour average geomagnetic t a i l  f i e l d  

magnitudes with the  component of the spacecraft location along the  

earth-sun l ine ,  X, more than 70 earth r a d i i  behind the earth, 

plotted against Kp. The dots indicate ant i -solar  oriented f i e l d  

vectors (southern hemisphere) ; the crosses indicate s o l a r  oriented 

f i e l d  vectors (northern hemisphere) . 
magnetic f i e l d  samples averaged during each one hour period ranges 

from 331 t o  587. 

The number of individual 

Fig. 13. The data of Fig. 1 2  replotted against a without designation 
P’ 

of f i e l d  polarity.  

Fig. 14. 1966 EXplorer 33 hourly average geomagnetic t a i l  f i e l d  magni- 

tudes with hours excluded during which sheet crossings occur. 

Symbols indicate the nuniber of hourly averages used fo r  each point. 

Solid symbols, indicate solar-directed (northern hemisphere) fields;  

open symbols aTe for  anti-solar directed (southern hemisphere) f ie lds .  

Data suggesting a decrease i n  f i e l d  magnitude near the edges of the 

t a i l  (not necessarily near the neutral  sheet) have been deleted. 

Weighted least-squares fit t o  the data, assuming exponential and power 

l a w  dependences, are given. 

i s  a resul t  from a multiple correlation analysis using t a i l  f i e l d  

magnitudes for  all d u e s  of Kn, i s  also presented. 

The expression B = 47.1-9.12 I n  R, which 

c 
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Fig. 15. 1966 Explorer 33 hourly average geomagnetic t a i l  f i e l d  magni- 

tudes f o r  geocentric distances between 30 and 40 ear th  r ad i i ,  p lot ted 

against the transverse coordinates, Y and 2. 

which sheet crossings occux have been excluded. The dots indicate 

ant i -solar  directed (southern hemisphere) f i e l d s ;  the crosses indicate 

solar  directed (northern hemisphere) f i e lds .  

Hourly averages during 

Fig. 16. Seme as Fig. 15  but  f o r  geocentric distances between 40 and 50 

ear th  rad i i .  

Fig. 17. Same as  Fig. 15  and Fig. 16 but  f o r  the component of  spacecraft 

location along the earth-sun l i n e ,  X, mre than 70 ear th  r a d i i  behind 

the eaxth. 
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